I Semester M.Sc. Degree Examination, January 2015 (2010-11 Onwards (NS) Scheme) CHEMISTRY

C-104 : Analytical Chemistry and Mathematics for Chemists
Time: 3 Hours
Max. Marks : 80
Instructions : Answer Part A and Part B in separate answer booklets.
PART - A

(Analytical Chemistry)

Marks : 44
Note : Answer question No. 1 and any three of the remaining.

1. Answer any seven of the following:
a) Explain why continuous extraction is preferred over batch extraction.
b) Distinguish between relative and absolute errors with examples. How is relative error expressed?
c) Explain the terms elution, eluent and development as applied to column chromatography.
d) Explain the working of tcd ingas chromatography.
e) Why double beam instrument is preferred over a single beam instrument for precise measurement of absorbance in spectrophotometric analysis? Explain.
f) Fluorimetry is more sensitive than absorptiometry method. Substantiate.
g) What is meant by radiotracer technique ? Give its applications.
h) Calculate the molar absorptivity of a solution of an organic compound in 0.1 MHcl giving an absorption of 0.586 in a 2 cm cell at $\lambda_{\max } 281 \mathrm{~nm}$. The concentration of the solution is $0.00004568 \mathrm{~mole}^{-1}$.
2. a) Explain the various methods adopted to minimise the determinate errors.
b) The following results were obtained in the determination of bismuth present in a sample.
$59.83,59.88,60.04,60.24,60.32$ and 60.45 . Determine the standard deviation and coefficient of variation.
c) With the help of a block diagram explain the role of each component in gas chromatography method.
P.T.O.
3. a) Explain the principle of electrophoresis and give its applications.
b) Describe how the choice of an eluting solvent is made in tlc ?
c) Discuss 2D-paper chromatrography with reference to the basis of separation, methodology and uses.
4. a) Derive Beer-Lambert's law and explain its deviations.
b) What are photometric titrations ? Explain different photometric titration curves with examples.
c) What is turbidimetry ? Describe its application in quantitative analysis.
5. a) What is isotopic dilution analysis? How is it usseful in the determination of concentration of an unknown sample?
b) Give an account of neutron activation analysis.
c) Describe the principle and working of a proportional counter.

PART-B
(Mathematics for Chemists)

Marks : 36
Answerany three of the remaining.

1. a) Find the volume of parallelopiped if $\vec{a}=-3 i+7 j+5 k, \vec{b}=-3 i+7 j-3 k$ and $\vec{c}=-7 i-5 j-3 k$ are the three edges of the parallelopiped.
b) Solve the system
$x-3 y-4 z=1$
$-x+y-3 z=14$
$y-3 z=5$ by Cramer's rule.
c) Find the characteristic polynomial and eigen values of the matrix.

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right) .
$$

2. a) Find the derivative of the following:
i) $y=(a x+b)^{n}$
ii) $y=\sqrt{1+x^{2}}$

4
b) If $y=\cos 2 x$ then prove that $4 y+\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=2 \sin 2 x$.
c) Discuss the maxima and minima of $f(x)=x^{3}-18 x^{2}+96 x+4$.
3. a) Evaluate
i) $\int \frac{x+2}{x\left(x^{2}-1\right)} d x$
ii) $\int x^{2} e^{x^{3}} d x$

5
b) If $z=\sqrt{x^{2}+y^{2}}$ then show that $x \cdot \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.
c) Solve $\left(x y^{2}+x\right) d x+\left(y x^{2}+y\right) d y=0$.
4. a) Obtain the Fourier series of the function $f(x)=x$ on $[-\pi, \pi]$.
b) A book shelf contains 20 books of which 12 are on chemistry and 8 are on mathematics. If three books are taken out at random, find the probability that all the three are on the same subject.
c) By the method of least squares, fit a straight line to the following data :

x	1	2	3	4	5
y	14	13	9	5	2

